Published in

CSIRO Publishing, Functional Plant Biology, 9(44), p. 888, 2017

DOI: 10.1071/fp16395

Links

Tools

Export citation

Search in Google Scholar

Flood tolerance of wheat – the importance of leaf gas films during complete submergence

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Submergence invokes a range of stressors to plants with impeded gas exchange between tissues and floodwater being the greatest challenge. Many terrestrial plants including wheat (Triticum aestivum L.), possess superhydrophobic leaf cuticles that retain a thin gas film when submerged, and the gas films enhance gas exchange with the floodwater. However, leaf hydrophobicity is lost during submergence and the gas films disappear accordingly. Here, we completely submerged wheat (with or without gas films) for up to 14 days and found that plants with gas films survived significantly longer (13 days) than plants without (10 days). Plants with gas films also had less dead tissue following a period of recovery. However, this study also revealed that reflections by gas films resulted in a higher light compensation point for underwater net photosynthesis for leaves with gas films compared with leaves without (IC = 52 vs 35 µmol photons m–2 s–1 with or without gas films, respectively). Still, already at ~5% of full sunlight the beneficial effect of gas films overcame the negative under ecologically relevant CO2 concentrations. Our study showed that dryland crops also benefit from leaf gas films during submergence and that this trait should be incorporated to improve flood tolerance of wheat.