Dissemin is shutting down on January 1st, 2025

Published in

De Gruyter, Reviews in Chemical Engineering, 2(34), p. 201-213, 2017

DOI: 10.1515/revce-2016-0043

Links

Tools

Export citation

Search in Google Scholar

Cold plasmas in the modification of catalysts

Journal article published in 2017 by Lingfeng Zhang, Xinying Liu ORCID, Michael S. Scurrell
Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Heterogeneous catalysts play an important role in the chemical industry and are also of critical importance in the general well-being of society in the 21st century. Increasing demands are being placed on catalyst performance in a number of areas such as activity, selectivity, longevity, and cost. Conventional approaches to improving catalytic performance are becoming exhausted, and novel ways of generating the increased performance are being sought. The utilization of cold plasmas has opened great opportunities for modification of catalysts, thanks to their room-temperature operations with reduced energy combustion, shortened duration, and undestroyed bulk structure. In this review, we present an assessment of the modification of catalysts by cold plasmas, with emphasis on particle sizes, dispersion of nanoparticles, distribution of elements, electronic properties, acid-base properties, surface functional groups, and metal-support interaction. Moreover, challenges and perspectives are also presented for the further modification of catalysts by cold plasmas and broadening their practical applications.