Published in

Rockefeller University Press, Journal of Experimental Medicine, 3(214), p. 753-771, 2017

DOI: 10.1084/jem.20162089

Links

Tools

Export citation

Search in Google Scholar

A myeloid tumor suppressor role for NOL3

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Despite the identification of several oncogenic driver mutations leading to constitutive JAK–STAT activation, the cellular and molecular biology of myeloproliferative neoplasms (MPN) remains incompletely understood. Recent discoveries have identified underlying disease-modifying molecular aberrations contributing to disease initiation and progression. Here, we report that deletion of Nol3 (Nucleolar protein 3) in mice leads to an MPN resembling primary myelofibrosis (PMF). Nol3−/− MPN mice harbor an expanded Thy1+LSK stem cell population exhibiting increased cell cycling and a myelomonocytic differentiation bias. Molecularly, this phenotype is mediated by Nol3−/−-induced JAK–STAT activation and downstream activation of cyclin-dependent kinase 6 (Cdk6) and Myc. Nol3−/− MPN Thy1+LSK cells share significant molecular similarities with primary CD34+ cells from PMF patients. NOL3 levels are decreased in CD34+ cells from PMF patients, and the NOL3 locus is deleted in a subset of patients with myeloid malignancies. Our results reveal a novel genetic PMF-like mouse model and identify a tumor suppressor role for NOL3 in the pathogenesis of myeloid malignancies.