Published in

Acoustical Society of America, The Journal of the Acoustical Society of America, 2(141), p. 818-827

DOI: 10.1121/1.4976050

Links

Tools

Export citation

Search in Google Scholar

Towards measuring the Speech Transmission Index in fluctuating noise: Accuracy and limitations

Journal article published in 2017 by Jelmer van Schoonhoven, Koenraad S. Rhebergen ORCID, Wouter A. Dreschler
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

In the field of room acoustics, the modulation transfer function (MTF) can be used to predict speech intelligibility in stationary noise and reverberation and can be expressed in one single value: the Speech Transmission Index (STI). One drawback of the classical STI measurement method is that it is not validated for fluctuating background noise. As opposed to the classical measurement method, the MTF due to reverberation can also be calculated using an impulse response measurement. This indirect method presents an opportunity for STI measurements in fluctuating noise, and a first prerequisite is a reliable impulse response measurement. The conditions under which the impulse response can be measured with sufficient precision were investigated in the current study. Impulse response measurements were conducted using a sweep stimulus. Two experiments are discussed with variable absorption, different levels of stationary and fluctuating background noise, and different sweep levels. Additionally, simulations with different types of fluctuating noise were conducted in an attempt to extrapolate the experimental findings to other acoustical conditions. The experiments and simulations showed that a minimum impulse-to-noise ratio of +25 dB in fluctuating noise was needed.