Dissemin is shutting down on January 1st, 2025

Published in

American Physiological Society, American Journal of Physiology - Renal Physiology, 6(300), p. F1454-F1457, 2011

DOI: 10.1152/ajprenal.00044.2011

Links

Tools

Export citation

Search in Google Scholar

Measuring glomerular number and size in perfused kidneys using MRI

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The goal of this work was to nondestructively measure glomerular (and thereby nephron) number in the whole kidney. Variations in the number and size of glomeruli have been linked to many renal and systemic diseases. Here, we develop a robust magnetic resonance imaging (MRI) technique based on injection of cationic ferritin (CF) to produce an accurate measurement of number and size of individual glomeruli. High-field (19 Tesla) gradient-echo MR images of perfused rat kidneys after in vivo intravenous injection of CF showed specific labeling of individual glomeruli with CF throughout the kidney. We developed a three-dimensional image-processing algorithm to count every labeled glomerulus. MRI-based counts yielded 33,786 ± 3,753 labeled glomeruli ( n = 5 kidneys). Acid maceration counting of contralateral kidneys yielded an estimate of 30,585 ± 2,053 glomeruli ( n = 6 kidneys). Disector/fractionator stereology counting yielded an estimate of 34,963 glomeruli ( n = 2). MRI-based measurement of apparent glomerular volume of labeled glomeruli was 4.89 × 10−4mm3( n = 5) compared with the average stereological measurement of 4.99 × 10−4mm3( n = 2). The MRI-based technique also yielded the intrarenal distribution of apparent glomerular volume, a measurement previously unobtainable in histology. This work makes it possible to nondestructively measure whole-kidney glomerular number and apparent glomerular volumes to study susceptibility to renal diseases and opens the door to similar in vivo measurements in animals and humans.