Published in

Elsevier, Biophysical Journal, 12(95), p. 5851-5861, 2008

DOI: 10.1529/biophysj.108.140467

Elsevier, Biophysical Journal, 3(96), p. 524a, 2009

DOI: 10.1016/j.bpj.2008.12.2701

Links

Tools

Export citation

Search in Google Scholar

Picosecond Fluorescence of Intact and Dissolved PSI-LHCI Crystals

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Over the past several years, many crystal structures of photosynthetic pigment-protein complexes have been determined, and these have been used extensively to model spectroscopic results obtained on the same proteins in solution. However, the crystal structure is not necessarily identical to the structure of the protein in solution. Here, we studied picosecond fluorescence of photosystem I light-harvesting complex I (PSI-LHCI), a multisubunit pigment-protein complex that catalyzes the first steps of photosynthesis. The ultrafast fluorescence of PSI-LHCI crystals is identical to that of dissolved crystals, but differs considerably from most kinetics presented in the literature. In contrast to most studies, the data presented here can be modeled quantitatively with only two compartments: PSI core and LHCI. This yields the rate of charge separation from an equilibrated core (22.5 ± 2.5 ps) and rates of excitation energy transfer from LHCI to core (kLC) and vice versa (kCL). The ratio between these rates, R = kCL/kLC, appears to be wavelength-dependent and scales with the ratio of the absorption spectra of LHCI and core, indicating the validity of a detailed balance relation between both compartments. kLC depends slightly but nonsystematically on detection wavelength, averaging (9.4 ± 4.9 ps)−1. R ranges from 0.5 (