Published in

Public Library of Science, PLoS ONE, 11(9), p. e113622, 2014

DOI: 10.1371/journal.pone.0113622

Links

Tools

Export citation

Search in Google Scholar

Role of Ca2+ and L-Phe in Regulating Functional Cooperativity of Disease-Associated “Toggle” Calcium-Sensing Receptor Mutations

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The Ca(2+)-sensing receptor (CaSR) regulates Ca(2+) homeostasis in the body by monitoring extracellular levels of Ca(2+) ([Ca(2+)]o) and amino acids. Mutations at the hinge region of the N-terminal Venus flytrap domain (VFTD) produce either receptor inactivation (L173P, P221Q) or activation (L173F, P221L) related to hypercalcemic or hypocalcemic disorders. In this paper, we report that both L173P and P221Q markedly impair the functional positive cooperativity of the CaSR as reflected by [Ca(2+)]o-induced [Ca(2+)]i oscillations, inositol-1-phosphate (IP1) accumulation and extracellular signal-regulated kinases (ERK1/2) activity. In contrast, L173F and P221L show enhanced responsiveness of these three functional readouts to [Ca(2+)]o. Further analysis of the dynamics of the VFTD mutants using computational simulation studies supports disruption in the correlated motions in the loss-of-function CaSR mutants, while these motions are enhanced in the gain-of-function mutants. Wild type (WT) CaSR was modulated by L-Phe in a heterotropic positive cooperative way, achieving an EC50 similar to those of the two activating mutations. The response of the inactivating P221Q mutant to [Ca(2+)]o was partially rescued by L-Phe, illustrating the capacity of the L-Phe binding site to enhance the positive homotropic cooperativity of CaSR. L-Phe had no effect on the other inactivating mutant. Moreover, our results carried out both in silico and in intact cells indicate that residue Leu(173), which is close to residues that are part of the L-Phe-binding pocket, exhibited impaired heterotropic cooperativity in the presence of L-Phe. Thus, Pro(221) and Leu(173) are important for the positive homo- and heterotropic cooperative regulation elicited by agonist binding.