Published in

International Union of Crystallography, Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 4(65), p. 357-360, 2009

DOI: 10.1107/s1744309109007064

Links

Tools

Export citation

Search in Google Scholar

Crystallization and preliminary crystallographic analysis of fragaceatoxin C, a pore-forming toxin from the sea anemoneActinia fragacea

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Sea anemones produce water-soluble toxins that have the ability to interact with cell membranes and form pores within them. The mechanism of pore formation is based on an initial binding step followed by oligomerization and membrane insertion. Although the final structure of the pore remains unclear, biochemical studies indicate that it consists of a tetramer with a functional radius of approximately 1.1 nm. Since four monomers seem to be insufficient to build a pore of this size, the currently accepted model suggests that lipids might also participate in its structure. In this work, the crystallization and preliminary crystallographic analysis of two crystal forms of fragaceatoxin C (FraC), a newly characterized actinoporin from Actinia fragacea, are described. The crystals diffracted up to 1.8 A resolution and the preliminary molecular-replacement solution supports an oligomeric structure of about 120 A in diameter.