Published in

Elsevier, Pediatric Neurology, 2(48), p. 105-110

DOI: 10.1016/j.pediatrneurol.2012.10.011

Links

Tools

Export citation

Search in Google Scholar

A Magnetic Resonance Imaging Study of Cerebellar Volume in Tuberous Sclerosis Complex

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The cerebellum plays an important role in motor learning and cognition, and structural cerebellar abnormalities have been associated with cognitive impairment. In tuberous sclerosis complex, neurological outcome is highly variable, and no consistent imaging or pathological determinant of cognition has been firmly established. The cerebellum calls for specific attention as mouse models of tuberous sclerosis complex have demonstrated a loss of cerebellar Purkinje cells and cases of human histological data have demonstrated a similar loss in patients. We hypothesized that there might be a common cerebellar finding in tuberous sclerosis complex that could be measured as morphometric changes with magnetic resonance imaging. Using a robust, automated image analysis procedure, we studied 36 patients with tuberous sclerosis complex and age-matched controls and observed significant volume loss among patients in the cerebellar cortices and vermis. Furthermore, this effect was strongest in a subgroup of 19 patients with a known, pathogenic mutation of the tuberous sclerosis 2 gene and impacted all cerebellar structures. We conclude that patients with tuberous sclerosis complex exhibit volume loss in the cerebellum, and this loss is larger and more widespread in patients with a tuberous sclerosis 2 mutation.