Published in

Oxford University Press, Plant Physiology, 2(166), p. 470-486, 2014

DOI: 10.1104/pp.114.243519

Links

Tools

Export citation

Search in Google Scholar

Image-Based High-Throughput Field Phenotyping of Crop Roots

Journal article published in 2014 by A. Bucksch ORCID, J. Burridge, L. M. York, A. Das, E. Nord, J. S. Weitz, J. P. Lynch
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Current plant phenotyping technologies to characterize agriculturally relevant traits have been primarily developed for use in laboratory and/or greenhouse conditions. In the case of root architectural traits, this limits phenotyping efforts, largely, to young plants grown in specialized containers and growth media. Hence, novel approaches are required to characterize mature root systems of older plants grown under actual soil conditions in the field. Imaging methods able to address the challenges associated with characterizing mature root systems are rare due, in part, to the greater complexity of mature root systems, including the larger size, overlap and diversity of root components. Our imaging solution combines a field imaging protocol and algorithmic approach to analyze mature root systems grown in the field. Via two case studies, we demonstrate how image analysis can be utilized to estimate localized root traits that reliably capture heritable architectural diversity as well as environmentally induced architectural variation of both monocot and dicot plants. In the first study we show that our algorithms and traits (including 13 novel traits inaccessible to manual estimation) can differentiate nine maize genotypes 8 weeks after planting. The second study focuses on a diversity panel of 188 cowpea genotypes to identify which traits are sufficient to differentiate genotypes even when comparing plants whose harvesting date differs up to 14 days. Overall, we find that automatically derived traits can increase both the speed and reproducibility of the trait-estimation pipeline under field conditions.