Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-018-23919-w

Links

Tools

Export citation

Search in Google Scholar

Multimodal imaging including semiquantitative short-wavelength and near-infrared autofluorescence in achromatopsia

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMultimodal imaging provides insights into phenotype and disease progression in inherited retinal disorders. Congenital achromatopsia (ACHM), a cone dysfunction syndrome, has been long considered a stable condition, but recent evidence suggests structural progression. With gene replacement strategies under development for ACHM, there is a critical need for imaging biomarkers to define progression patterns and follow therapy. Using semiquantitative plots, near-infrared (NIR-AF) and short-wavelength autofluorescence (SW-AF) were explored and correlated with clinical characteristics and retinal structure on optical coherence tomography (OCT). In sixteen ACHM patients with genetic confirmation (CNGA3, n = 8; CNGB3, n = 7; PDE6C, n = 1), semiquantitative plots allowed the detailed analysis of autofluorescence patterns, even in poorly fixating eyes. Twelve eyes showed perifoveal hyperautofluorescent rings on SW-AF, and 7 eyes had central hypoautofluorescent areas on NIR-AF, without association between these alterations (P = 0.57). Patients with central NIR-AF hypoautofluorescence were older (P = 0.004) and showed more advanced retinal alterations on OCT than those with normal NIR-AF (P = 0.051). NIR-AF hypoautofluorescence diameter was correlated to patient age (r = 0.63, P = 0.009), size of ellipsoid zone defect on OCT (r = 0.67, P = 0.005), but not to the size of SW-AF hyperautofluorescence (P = 0.27). These results demonstrate the interest of NIR-AF as imaging biomarker in ACHM, suggesting a relationship with age and disease progression.