Published in

Springer, Neurochemical Research, 4(35), p. 613-619, 2009

DOI: 10.1007/s11064-009-0106-6

Links

Tools

Export citation

Search in Google Scholar

Brain arachidonic acid cascade enzymes are upregulated in a rat model of unilateral Parkinson disease

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Arachidonic acid (AA) signaling is upregulated in the caudate-putamen and frontal cortex of unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats, a model for asymmetrical Parkinson disease. AA signaling can be coupled to D(2)-like receptor initiated AA hydrolysis from phospholipids by cytosolic phospholipase A(2) (cPLA(2)) and subsequent metabolism by cyclooxygenase (COX)-2. In unilaterally 6-OHDA- and sham-lesioned rats, we measured brain expression of cPLA(2), other PLA(2) enzymes, and COX-2. Activity and protein levels of cPLA(2) were significantly higher as was COX-2-protein in caudate-putamen, frontal cortex and remaining brain on the lesioned compared to intact side of the 6-OHDA lesioned rats, and compared to sham brain. Secretory sPLA(2) and Ca(2+)-independent iPLA(2) expression did not differ between sides or groups. Thus, the tonically increased ipsilateral AA signal in the lesioned rat corresponds to upregulated cPLA(2) and COX-2 expression within the AA metabolic cascade, which may contribute to symptoms and pathology in Parkinson disease.