Published in

Cambridge University Press (CUP), Proceedings of the International Astronomical Union, A29B(11), p. 493-496

DOI: 10.1017/s1743921316005962

Links

Tools

Export citation

Search in Google Scholar

Constraining the physics of carbon crystallization through pulsations of a massive DAV BPM37093

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractWe are trying to reduce the largest uncertainties in using white dwarf stars as Galactic chronometers by understanding the details of carbon crystalliazation that currently result in a 1–2 Gyr uncertainty in the ages of the oldest white dwarf stars. We expect the coolest white dwarf stars to have crystallized interiors, but theory also predicts hotter white dwarf stars, if they are massive enough, will also have some core crystallization. BPM 37093 is the first discovered of only a handful of known massive white dwarf stars that are also pulsating DAV, or ZZ Ceti, variables. Our approach is to use the pulsations to constrain the core composition and amount of crystallization. Here we report our analysis of 4 hours of continuous time series spectroscopy of BPM 37093 with Gemini South combined with simultaneous time-series photometry from Mt. John (New Zealand), SAAO, PROMPT, and Complejo Astronomico El Leoncito (CASLEO, Argentina).