American Society for Microbiology, Journal of Bacteriology, 9(186), p. 2586-2593, 2004
DOI: 10.1128/jb.186.9.2586-2593.2004
Full text: Download
ABSTRACT Helicobacter pylori is a gram-negative bacterium that colonizes the human stomach, causes gastritis, and is associated with ulcers and gastric cancer. H. pylori is naturally competent for transformation. Natural genetic transformation is believed to be essential for the genetic plasticity observed in this species. While the relevance of horizontal gene transfer in H. pylori adaptiveness and antibiotic resistance is well documented, the DNA transformation machinery components are barely known. No enzymatic activity associated with the transformation process has been determined experimentally and described. We isolated, microsequenced, and cloned a major DNA nuclease from H. pylori. This protein, encoded by the open reading frame hp0323 , was expressed in Escherichia coli . The purified protein, NucT, has a cation-independent thermostable nuclease activity that preferentially cleaves single-stranded DNA. NucT is associated with the membrane. NucT-deficient H. pylori strains are one or more orders of magnitude less efficient than the parental strain for transformation with either chromosomal or self-replicating plasmid DNA. To the best of our knowledge, NucT is the first nuclease identified in a gram-negative natural transformation system, and its existence suggests that there is a mechanism of DNA processing and uptake similar to the mechanisms in well-studied gram-positive systems.