Dissemin is shutting down on January 1st, 2025

Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 35(105), p. 13051-13056, 2008

DOI: 10.1073/pnas.0804280105

Links

Tools

Export citation

Search in Google Scholar

Short telomeres are a risk factor for idiopathic pulmonary fibrosis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Idiopathic interstitial pneumonias (IIPs) have a progressive and often fatal course, and their enigmatic etiology has complicated approaches to effective therapies. Idiopathic pulmonary fibrosis (IPF) is the most common of IIPs and shares with IIPs an increased incidence with age and unexplained scarring in the lung. Short telomeres limit tissue renewal capacity in the lung and germ-line mutations in telomerase components, hTERT and hTR , underlie inheritance in a subset of families with IPF. To examine the hypothesis that short telomeres contribute to disease risk in sporadic IIPs, we recruited patients who have no family history and examined telomere length in leukocytes and in alveolar cells. To screen for mutations, we sequenced hTERT and hTR. We also reviewed the cases for features of a telomere syndrome. IIP patients had shorter leukocyte telomeres than age-matched controls ( P < 0.0001). In a subset (10%), IIP patients had telomere lengths below the first percentile for their age. Similar to familial cases with mutations, IPF patients had short telomeres in alveolar epithelial cells ( P < 0.0001). Although telomerase mutations were rare, detected in 1 of 100 patients, we identified a cluster of individuals (3%) with IPF and cryptogenic liver cirrhosis, another feature of a telomere syndrome. Short telomeres are thus a signature in IIPs and likely play a role in their age-related onset. The clustering of cryptogenic liver cirrhosis with IPF suggests that the telomere shortening we identify has consequences and can contribute to what appears clinically as idiopathic progressive organ failure in the lung and the liver.