Published in

American Chemical Society, Crystal Growth and Design, 7(14), p. 3221-3233, 2014

DOI: 10.1021/cg4016355

Links

Tools

Export citation

Search in Google Scholar

The Structure and Thermal Stability of Amylose−Lipid Complexes: A Case Study on Amylose−Glycerol Monostearate

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Three different crystalline amylose−glycerol monostearate (GMS) complexes with increasing thermal stability can be distinguished: type I, type IIa, and type IIb. All complexes consist of GMS-loaded amylose helices that pack hexagonally into lamellar habits. The complex melting points are proportional to the thickness of the lamellae and depend on the amount of water in the system. For type I complexes, SAXS experiments reveal folded amylose chains and a lamellar thickness governed by the presence of two stretched lipid molecules per amylose helix. In the conversion from type I to type IIa complexes, the short amylose chains unfold and assume a stretched conformation, which increases the number of aligned lipid molecules within the helices to four. In type IIb complexes, another pair of lipid molecules is added. The derived quantitative relation between crystal layer thickness, water content and melting point for amylose−GMS complexes also predicts the melting points of other amylose−monoacyl glycerol complexes. ; Peer reviewed