World Scientific Publishing, International Journal of Computational Methods, p. 1850097
DOI: 10.1142/s0219876218500974
Full text: Unavailable
We combine isogeometric analysis (IGA), level set (LS) and pointwise density-mapping techniques for design and topology optimization of piezoelectric/flexoelectric materials. We use B-spline elements to discretize the fourth-order partial differential equations of flexoelectricity, which require at least [Formula: see text] continuous approximations. We adopt the multiphase vector LS model which easily copes with various numbers of material phases and multiple constraints. In case studies, we first confirm the accuracy of the IGA model and then provide numerical examples for both pure and composite flexoelectric structures. The results demonstrate the significant enhancement in electromechanical coupling coefficient that can be obtained using topology optimization and particularly by multi-material topology optimization for flexoelectric composites.