Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-018-23076-0

Links

Tools

Export citation

Search in Google Scholar

Genetic connectivity from the Arctic to the Antarctic: Sclerolinum contortum and Nicomache lokii (Annelida) are both widespread in reducing environments

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe paradigm of large geographic ranges in the deep sea has been challenged by genetic studies, which often reveal putatively widespread species to be several taxa with more restricted ranges. Recently, a phylogeographic study revealed that the tubeworm Sclerolinum contortum (Siboglinidae) inhabits vents and seeps from the Arctic to the Antarctic. Here, we further test the conspecificity of the same populations of S. contortum with additional mitochondrial and nuclear markers. We also investigate the genetic connectivity of another species with putatively the same wide geographic range - Nicomache lokii (Maldanidae). Our results support the present range of S. contortum, and the range of N. lokii is extended from vents and seeps in the Nordic Seas to mud volcanoes in the Barbados Trench and Antarctic vents. Sclerolinum contortum shows more pronounced geographic structure than N. lokii, but whether this is due to different dispersal capacities or reflects the geographic isolation of the sampled localities is unclear. Two distinct mitochondrial lineages of N. lokii are present in the Antarctic, which may result from two independent colonization events. The environmental conditions inhabited by the two species and implications for their distinct habitat preference is discussed.