Published in

American Chemical Society, Biochemistry, 34(52), p. 5708-5722, 2013

DOI: 10.1021/bi400804z

Links

Tools

Export citation

Search in Google Scholar

MscS-Like Mechanosensitive Channels in Plants and Microbes

Journal article published in 2013 by Margaret E. Wilson, Grigory Maksaev, Elizabeth S. Haswell ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The challenge of osmotic stress is something all living organisms must face as a result of environmental dynamics. Over the past three decades, innovative research and cooperation across disciplines has irrefutably established that cells utilize mechanically gated ion channels to release osmolytes and prevent cell lysis during hypoosmotic stress. Early electrophysiological analysis of the inner membrane of Escherichia coli identified the presence of three distinct mechanosensitive activities. The subsequent discoveries of the genes responsible for two of these activities, the mechanosensitive channels of large (MscL) and small (MscS) conductance, led to the identification of two diverse families of mechanosensitive channels. The latter of these two families, the MscS family, is made up of members from bacteria, archaea, fungi, and plants. Genetic and electrophysiological analysis of these family members has provided insight into how organisms use mechanosensitive channels for osmotic regulation in response to changing environmental and developmental circumstances. Furthermore, solving the crystal structure of E. coli MscS and several homologs in several conformational states has contributed to the understanding of the gating mechanisms of these channels. Here we summarize our current knowledge of MscS homologs from all three domains of life, and address their structure, proposed physiological functions, electrophysiological behaviors, and topological diversity.