Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-018-22694-y

Links

Tools

Export citation

Search in Google Scholar

Oxic Fe(III) reduction could have generated Fe(II) in the photic zone of Precambrian seawater

Journal article published in 2018 by Elizabeth D. Swanner ORCID, Markus Maisch, Wenfang Wu, Andreas Kappler
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMany marine Precambrian iron formations (IF) record deep anoxic seawater enriched in Fe(II) (i.e. ferruginous) overlain by mildly oxygenated surface water. This is reflected by iron-rich sediments forming in deep basins, and relatively iron-poor sediments forming in shallow, sunlit waters. Such an iron gradient is often interpreted as a redox interface where dissolved Fe(II) was oxidized and precipitated as Fe(III)-bearing minerals. As such, sedimentary iron enrichments are proxy to the progressive oxidation of the oceans through geological time. However, this interpretation is founded on the assumption that Fe(II) could not persist within an oxygenated water column. Here, we cultivated cyanobacteria in an illuminated column supplied with Fe(II)-rich seawater medium in a laboratory-scale analog of a continental margin supporting IF deposition. We first observed Fe(II) oxidation with oxygen, then biologically-mediated reduction of Fe(III) (oxyhydr)oxides, which maintained a pool of Fe(II) in the presence of oxygen. Such steady-state iron redox cycling may have maintained dissolved, and hence mobile Fe(II) in oxygenated seawater above ferruginous deep basins such as those inferred for many Precambrian IF.