Published in

Nature Research, Scientific Reports, 1(5), 2015

DOI: 10.1038/srep11798

Links

Tools

Export citation

Search in Google Scholar

Tunable continuous wave emission via phase-matched second harmonic generation in a ZnSe microcylindrical resonator

Journal article published in 2015 by N. Vukovic, N. Healy, J. R. Sparks, J. V. Badding, P. Horak ORCID, A. C. Peacock
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractWhispering gallery mode microresonators made from crystalline materials are of great interest for studies of low threshold nonlinear phenomena. Compared to amorphous materials, crystalline structures often exhibit desirable properties such as high indices of refraction, high nonlinearities and large windows of transparency, making them ideal for use in frequency comb generation, microlasing and all-optical processing. In particular, crystalline materials can also possess a non-centrosymmetric structure which gives rise to the second order nonlinearity, necessary for three photon processes such as frequency doubling and parametric down-conversion. Here we report a novel route to fabricating crystalline zinc selenide microcylindrical resonators from our semiconductor fibre platform and demonstrate their use for tunable, low power continuous wave second harmonic generation. Visible red light is observed when pumped with a telecommunications band source by a process that is phase-matched between different higher order radial modes, possible due to the good spatial overlap between the pump and signal in the small volume resonator. By exploiting the geometrical flexibility offered by the fibre platform together with the ultra-wide 500–22000 nm transmission window of the ZnSe material, we expect these resonators to find use in applications ranging from spectroscopy to quantum information systems.