Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-018-20203-9

Links

Tools

Export citation

Search in Google Scholar

Longitudinal association of type 1 interferon-induced chemokines with disease activity in systemic lupus erythematosus

Journal article published in 2018 by K. L. Connelly, R. Kandane-Rathnayake, M. Huq, A. Hoi ORCID, M. Nikpour, E. F. Morand ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractType I interferon (IFN) pathways are significant in SLE pathogenesis. Less is known about the utility of measuring markers of IFN activity in patients, or whether patient subsets with different profiles exist. We explored the longitudinal associations of IFN-induced chemokines with disease activity in a cohort of SLE patients. We calculated a validated composite score (IFN-CK) of three type I IFN-inducible chemokines (CCL2/CXCL10/CCL19) measured in 109 SLE patients (median 7 occasions over 3.2 years). Longitudinal associations of IFN-CK score with disease activity (SLEDAI-2K) and other variables were assessed using general estimating equation (GEE) methods. IFN-CK was detectable in all patients. SLEDAI-2K was significantly associated with IFN-CK, damage score and prednisolone dose. SLEDAI-2K remained significantly associated with IFN-CK over time after adjustment of covariates. Patients with high time-adjusted mean IFN-CK had lower complement and higher time-adjusted disease activity. Concordance between IFN-CK and SLEDAI-2K varied widely among patients, with some individuals having none, others weak, and a subset very high concordance. In summary in our cohort of SLE patients, serum IFN-CK varied over time with disease activity, but with wide variation in concordance. Differing relationships between IFN pathway activation and disease activity may be valuable in assigning patients to emerging IFN-pathway targeting treatments.