Published in

Genetics Society of America, G3, 4(8), p. 1225-1245, 2018

DOI: 10.1534/g3.117.300524

Links

Tools

Export citation

Search in Google Scholar

Drought Sensitivity of Norway Spruce at the Species' Warmest Fringe: Quantitative and Molecular Analysis Reveals High Genetic Variation Among and Within Provenances

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

AbstractNorway spruce (Picea abies) is by far the most important timber species in Europe, but its outstanding role in future forests is jeopardized by its high sensitivity to drought. We analyzed drought response of Norway spruce at the warmest fringe of its natural range. Based on a 35-year old provenance experiment we tested for genetic variation among and within seed provenances across consecutively occurring strong drought events using dendroclimatic time series. Moreover, we tested for associations between ≈1,700 variable SNPs and traits related to drought response, wood characteristics and climate-growth relationships. We found significant adaptive genetic variation among provenances originating from the species’ Alpine, Central and Southeastern European range. Genetic variation between individuals varied significantly among provenances explaining up to 44% of the phenotypic variation in drought response. Varying phenotypic correlations between drought response and wood traits confirmed differences in selection intensity among seed provenances. Significant associations were found between 29 SNPs and traits related to drought, climate-growth relationships and wood properties which explained between 11 and 43% of trait variation, though 12 of them were due to single individuals having extreme phenotypes of the respective trait. The majority of these SNPs are located within exons of genes and the most important ones are preferentially expressed in cambium and xylem expansion layers. Phenotype-genotype associations were stronger if only provenances with significant quantitative genetic variation in drought response were considered. The present study confirms the high adaptive variation of Norway spruce in Central and Southeastern Europe and demonstrates how quantitative genetic, dendroclimatic and genomic data can be linked to understand the genetic basis of adaptation to climate extremes in trees.