Links

Tools

Export citation

Search in Google Scholar

Gate Tunable Transport in Graphene/MoS2/(Cr/Au) Vertical Field-Effect Transistors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Two-dimensional materials based vertical field-effect transistors have been widely studied due to their useful applications in industry. In the present study, we fabricate graphene/MoS2/(Cr/Au) vertical transistor based on the mechanical exfoliation and dry transfer method. Since the bottom electrode was made of monolayer graphene (Gr), the electrical transport in our Gr/MoS2/(Cr/Au) vertical transistors can be significantly modified by using back-gate voltage. Schottky barrier height at the interface between Gr and MoS2 can be modified by back-gate voltage and the current bias. Vertical resistance (Rvert) of a Gr/MoS2/(Cr/Au) transistor is compared with planar resistance (Rplanar) of a conventional lateral MoS2 field-effect transistor. We have also studied electrical properties for various thicknesses of MoS2 channels in both vertical and lateral transistors. As the thickness of MoS2 increases, Rvert increases, but Rplanar decreases. The increase of Rvert in the thicker MoS2 film is attributed to the interlayer resistance in the vertical direction. However, Rplanar shows a lower value for a thicker MoS2 film because of an excess of charge carriers available in upper layers connected directly to source/drain contacts that limits the conduction through layers closed to source/drain electrodes. Hence, interlayer resistance associated with these layers contributes to planer resistance in contrast to vertical devices in which all layers contribute interlayer resistance.