Links

Tools

Export citation

Search in Google Scholar

Cache Aided Decode-and-Forward Relaying Networks: From the Spatial View

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

We investigate cache technique from the spatial view and study its impact on the relaying networks. In particular, we consider a dual-hop relaying network, where decode-and-forward (DF) relays can assist the data transmission from the source to the destination. In addition to the traditional dual-hop relaying, we also consider the cache from the spatial view, where the source can prestore the data among the memories of the nodes around the destination. For the DF relaying networks without and with cache, we study the system performance by deriving the analytical expressions of outage probability and symbol error rate (SER). We also derive the asymptotic outage probability and SER in the high regime of transmit power, from which we find the system diversity order can be rapidly increased by using cache and the system performance can be significantly improved. Simulation and numerical results are demonstrated to verify the proposed studies and find that the system power resources can be efficiently saved by using cache technique.