Published in

Oxford University Press, Metallomics, 1(5), p. 29-42, 2013

DOI: 10.1039/c2mt20009k

Links

Tools

Export citation

Search in Google Scholar

Calciomics: integrative studies of Ca2+-binding proteins and their interactomes in biological systems

Journal article published in 2013 by Yubin Zhou, Shenghui Xue ORCID, Jenny J. Yang
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Calcium ion (Ca(2+)), the fifth most common chemical element in the earth's crust, represents the most abundant mineral in the human body. By binding to a myriad of proteins distributed in different cellular organelles, Ca(2+) impacts nearly every aspect of cellular life. In prokaryotes, Ca(2+) plays an important role in bacterial movement, chemotaxis, survival reactions and sporulation. In eukaryotes, Ca(2+) has been chosen through evolution to function as a universal and versatile intracellular signal. Viruses, as obligate intracellular parasites, also develop smart strategies to manipulate the host Ca(2+) signaling machinery to benefit their own life cycles. This review focuses on recent advances in applying both bioinformatic and experimental approaches to predict and validate Ca(2+)-binding proteins and their interactomes in biological systems on a genome-wide scale (termed "calciomics"). Calmodulin is used as an example of Ca(2+)-binding protein (CaBP) to demonstrate the role of CaBPs on the regulation of biological functions. This review is anticipated to rekindle interest in investigating Ca(2+)-binding proteins and Ca(2+)-modulated functions at the systems level in the post-genomic era.