Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Proteomics, (108), p. 171-187, 2014

DOI: 10.1016/j.jprot.2014.05.007

Links

Tools

Export citation

Search in Google Scholar

Identification and quantification of the basal and inducible Nrf2-dependent proteomes in mouse liver: Biochemical, pharmacological and toxicological implications

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The transcription factor Nrf2 is a master regulator of cellular defence: Nrf2 null mice (Nrf2(−/−)) are highly susceptible to chemically induced toxicities. We report a comparative iTRAQ-based study in Nrf2(−/−) mice treated with a potent inducer, methyl-2-cyano-3,12-dioxooleana-1,9(11)dien-28-oate (CDDO-me; bardoxolone -methyl), to define both the Nrf2-dependent basal and inducible hepatoproteomes. One thousand five hundred twenty-one proteins were fully quantified (FDR <1%). One hundred sixty-one were significantly different (P<0.05) between WT and Nrf2(−/−) mice, confirming extensive constitutive regulation by Nrf2. Treatment with CDDO-me (3mg/kg; i.p.) resulted in significantly altered expression of 43 proteins at 24h in WT animals. Six proteins were regulated at both basal and inducible levels exhibiting the largest dynamic range of Nrf2 regulation: cytochrome P4502A5 (CYP2A5; 17.2-fold), glutathione-S-transferase-Mu 3 (GSTM3; 6.4-fold), glutathione-S-transferase Mu 1 (GSTM1; 5.9-fold), ectonucleoside-triphosphate diphosphohydrolase (ENTPD5; 4.6-fold), UDP-glucose-6-dehydrogenase (UDPGDH; 4.1-fold) and epoxide hydrolase (EPHX1; 3.0-fold). These proteins, or their products, thus provide a potential source of biomarkers for Nrf2 activity. ENTPD5 is of interest due to its emerging role in AKT signalling and, to our knowledge, this protein has not been previously shown to be Nrf2-dependent. Only two proteins altered by CDDO-me in WT animals were similarly affected in Nrf2(−/−) mice, demonstrating the high degree of selectivity of CDDO-me for the Nrf2:Keap1 signalling pathway.