Published in

MDPI, Remote Sensing, 7(10), p. 1014

DOI: 10.3390/rs10071014

Links

Tools

Export citation

Search in Google Scholar

SAR tomography as an add-On to PSI: Detection of coherent scatterers in the presence of phase instabilities

Journal article published in 2018 by Muhammad Adnan Siddique, Urs Wegmuller, Irena Hajnsek, Othmar Frey ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The estimation of deformation parameters using persistent scatterer interferometry (PSI) is limited to single dominant coherent scatterers. As such, it rejects layovers wherein multiple scatterers are interfering in the same range-azimuth resolution cell. Differential synthetic aperture radar (SAR) tomography can improve deformation sampling as it has the ability to resolve layovers by separating the interfering scatterers. In this way, both PSI and tomography inevitably require a means to detect coherent scatterers, i.e., to perform hypothesis testing to decide whether a given candidate scatterer is coherent. This paper reports the application of a detection strategy in the context of “tomography as an add-on to PSI”. As the performance of a detector is typically linked to the statistical description of the underlying mathematical model, we investigate how the statistics of the phase instabilities in the PSI analysis are carried forward to the subsequent tomographic analysis. While phase instabilities in PSI are generally modeled as an additive noise term in the interferometric phase model, their impact in SAR tomography manifests as a multiplicative disturbance. The detection strategy proposed in this paper allows extending the same quality considerations as used in the prior PSI processing (in terms of the dispersion of the residual phase) to the subsequent tomographic analysis. In particular, the hypothesis testing for the detection of coherent scatterers is implemented such that the expected probability of false alarm is consistent between PSI and tomography. The investigation is supported with empirical analyses on an interferometric data stack comprising 50 TerraSAR-X acquisitions in stripmap mode, over the city of Barcelona, Spain, from 2007–2012