Published in

EDP Sciences, Astronomy & Astrophysics, (620), p. A178, 2018

DOI: 10.1051/0004-6361/201834181

Links

Tools

Export citation

Search in Google Scholar

Matrix-propagator approach to compute fluid Love numbers and applicability to extrasolar planets

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Context.The mass and radius of a planet directly provide its bulk density, which can be interpreted in terms of its overall composition. Any measure of the radial mass distribution provides a first step in constraining the interior structure. The fluid Love numberk2provides such a measure, and estimates ofk2for extrasolar planets are expected to be available in the coming years thanks to improved observational facilities and the ever-extending temporal baseline of extrasolar planet observations.Aims.We derive a method for calculating the Love numbersknof any object given its density profile, which is routinely calculated from interior structure codes.Methods.We used the matrix-propagator technique, a method frequently used in the geophysical community.Results.We detail the calculation and apply it to the case of GJ 436b, a classical example of the degeneracy of mass-radius relationships, to illustrate how measurements ofk2can improve our understanding of the interior structure of extrasolar planets. We implemented the method in a code that is fast, freely available, and easy to combine with preexisting interior structure codes. While the linear approach presented here for the calculation of the Love numbers cannot treat the presence of nonlinear effects that may arise under certain dynamical conditions, it is applicable to close-in gaseous extrasolar planets like hot Jupiters, likely the first targets for whichk2will be measured.