Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Geoscience and Remote Sensing, 6(56), p. 3062-3077, 2018

DOI: 10.1109/tgrs.2018.2790480

Links

Tools

Export citation

Search in Google Scholar

Object-based multipass InSAR via robust low-rank tensor decomposition

Journal article published in 2018 by Jian Kang ORCID, Yuanyuan Wang ORCID, Michael Schmitt ORCID, Xiao Xiang Zhu ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The most unique advantage of multipass synthetic aperture radar interferometry (InSAR) is the retrieval of long-term geophysical parameters, e.g., linear deformation rates, over large areas. Recently, an object-based multipass InSAR framework has been proposed by Kang, as an alternative to the typical single-pixel methods, e.g., persistent scatterer interferometry (PSI), or pixel-cluster-based methods, e.g., SqueeSAR. This enables the exploitation of inherent properties of InSAR phase stacks on an object level. As a follow-on, this paper investigates the inherent low rank property of such phase tensors and proposes a Robust Multipass InSAR technique via Object-based low rank tensor decomposition. We demonstrate that the filtered InSAR phase stacks can improve the accuracy of geophysical parameters estimated via conventional multipass InSAR techniques, e.g., PSI, by a factor of 10-30 in typical settings. The proposed method is particularly effective against outliers, such as pixels with unmodeled phases. These merits, in turn, can effectively reduce the number of images required for a reliable estimation. The promising performance of the proposed method is demonstrated using high-resolution TerraSAR-X image stacks.