Published in

Public Library of Science, PLoS ONE, 10(12), p. e0185372, 2017

DOI: 10.1371/journal.pone.0185372

Links

Tools

Export citation

Search in Google Scholar

Human babesiosis: Indication of a molecular mimicry between thrombospondin domains from a novel Babesia microti BmP53 protein and host platelets molecules

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Human babesiosis is caused by the apicomplexan parasite Babesia microti, which is of major public health concern in the United States and elsewhere, resulting in malaise and fatigue, followed by a fever and hemolytic anemia. In this paper we focus on the characterization of a novel B. microti thrombospondin domain (TSP1)-containing protein (BmP53) from the new annotation of the B. microti genome (locus 'BmR1_04g09041'). This novel protein (BmP53) had a single TSP1 and a transmembrane domain, with a short cytoplasmic tail containing a sub-terminal glutamine residue, but no signal peptide and Von Willebrand factor type A domains (VWA), which are found in classical thrombospondin-related adhesive proteins (TRAP). Co-localization assays of BmP53 and Babesia microti secreted antigen 1 (BmSA1) suggested that BmP53 might be a non-secretory membranous protein. Molecular mimicry between the TSP1 domain from BmP53 and host platelets molecules was indicated through different measures of sequence homology, phylogenetic analysis, 3D structure and shared epitopes. Indeed, hamster isolated platelets cross-reacted with mouse anti-BmP53-TSP1. Molecular mimicry are used to help parasites to escape immune defenses, resulting in immune evasion or autoimmunity. Furthermore, specific host reactivity was also detected against the TSP1-free part of BmP53 in infected hamster sera. In conclusion, the TSP1 domain mimicry might help in studying the mechanisms of parasite-induced thrombocytopenia, with the TSP1-free truncate of the protein representing a potential safe candidate for future vaccine studies.