Published in

Elsevier, Chemical Engineering Journal, (357), p. 750-760, 2019

DOI: 10.1016/j.cej.2018.09.164

Links

Tools

Export citation

Search in Google Scholar

Hybrid iron montmorillonite nano-particles as an oxygen scavenger

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Iron nanoparticles supported on montmorillonite (MMT-Fe) were synthesized via the reduction by sodium borohydride of iron salts dissolved in a suspension of MMT. The MMT-Fe black powder collected after the evaporation of the solvent was analysed by Transmission Electron Microscopy, which revealed the formation of aggregates of metallic nanoparticles with an average size of 57 ± 17 nm dispersed on the surface of MMT. According to the X-ray diffraction, no iron ions are intercalated in the interlayer spacing of MMT, and no other crystalline species are formed. 57Fe Mössbauer spectroscopy evidences the formation of mainly zero valent iron in the form of iron boride. The O2 absorption kinetic of the synthesized powders was found to follow a second-order law. The study of the O2 absorption properties of as-synthesized, dried and stored (40 days) powders shows reaction constant (k), coefficient of proportionality (n) and O2 absorption capacities of the same order of magnitude. The O2 absorption capacity of the as-synthesized, dried and stored powders were found equal to 0.20 ± 0.01, 0.14 ± 0.03 and 0.09 ± 0.00 g O2 per g of iron, respectively. The initial absorption rate was found within the range [0.5–1.5]% O2 min−1 g−1.