Dissemin is shutting down on January 1st, 2025

Published in

Institute of Electrical and Electronics Engineers, IEEE Geoscience and Remote Sensing Letters, 2(16), p. 320-324, 2019

DOI: 10.1109/lgrs.2018.2872132

Links

Tools

Export citation

Search in Google Scholar

A soft computing framework for image classification based on recurrence plots

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Suitable time series representations play an important role in classification tasks. In this letter, we investigate the use of recurrence-plot-(RP)-based representations in the classification of eucalyptus regions in remote sensing images. The proposed framework is composed of three steps. First, time series associated with image pixels are represented by RP images; next, RP images are characterized by means of visual description approaches; finally, we use a soft computing framework based on genetic programing to discover an effective combination of time series dissimilarity functions to combine extracted features. Performed experiments in a eucalyptus classification problem demonstrated that the proposed framework is effective when compared to approaches based on the use of time series itself.