Published in

Nature Research, Nature Communications, 1(9), 2018

DOI: 10.1038/s41467-017-02684-w

Links

Tools

Export citation

Search in Google Scholar

Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractA long-lived hot carrier population is critical in order to develop working hot carrier photovoltaic devices with efficiencies exceeding the Shockley–Queisser limit. Here, we report photoluminescence from hot-carriers with unexpectedly long lifetime (a few ns) in formamidinium tin triiodide. An unusual large blue shift of the time-integrated photoluminescence with increasing excitation power (150 meV at 24 K and 75 meV at 293 K) is displayed. On the basis of the analysis of energy-resolved and time-resolved photoluminescence, we posit that these phenomena are associated with slow hot carrier relaxation and state-filling of band edge states. These observations are both important for our understanding of lead-free hybrid perovskites and for an eventual future development of efficient lead-free perovskite photovoltaics.