Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, Therapeutic Advances in Urology, 5(8), p. 302-318, 2016

DOI: 10.1177/1756287216652779

Links

Tools

Export citation

Search in Google Scholar

Oxidation-reduction potential of semen: what is its role in the treatment of male infertility?

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The diagnosis of male infertility relies largely on conventional semen analysis, and its interpretation has a profound influence on subsequent management of patients. Despite poor correlation between conventional semen parameters and male fertility potential, inclusion of advanced semen quality tests to routine male infertility workup algorithms has not been widely accepted. Oxidative stress is one of the major mediators in various etiologies of male infertility; it has deleterious effects on spermatozoa, including DNA damage. Alleviation of oxidative stress constitutes a potential treatment strategy for male infertility. Measurement of seminal oxidative stress is of crucial role in the identification and monitoring of patients who may benefit from treatments. Various tests including reactive oxygen species (ROS) assay, total antioxidant capacity (TAC) assay or malondialdehyde (MDA) assay used by different laboratories have their own drawbacks. Oxidation-reduction potential (ORP) is a measure of overall balance between oxidants and antioxidants, providing a comprehensive measure of oxidative stress. The MiOXSYS™ System is a novel technology based on a galvanostatic measure of electrons; it presents static ORP (sORP) measures with static referring to the passive or current state of activity between oxidants and antioxidants. Preliminary studies have correlated sORP to poor semen qualities. It is potentially useful in prognostication of assisted reproductive techniques outcomes, screening of antioxidants either in vivo or during IVF cycles, identification of infertile men who may benefit from treatment of oxidative stress, and monitoring of treatment success. The simplified laboratory test requiring a small amount of semen would facilitate clinical application and research in the field. In this paper, we discuss the measurement of ORP by the MiOXSYS System as a real-time assessment of seminal oxidative stress, and argue that it is a potential valuable clinical test that should be incorporated into the male infertility workup and become an important guide to the treatment of oxidative stress-induced male infertility.