Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-03307-6

Links

Tools

Export citation

Search in Google Scholar

Non-iterative Directional Dark-field Tomography

Journal article published in 2017 by Florian Schaff ORCID, Friedrich Prade, Yash Sharma, Martin Bech ORCID, Franz Pfeiffer
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractDark-field imaging is a scattering-based X-ray imaging method that can be performed with laboratory X-ray tubes. The possibility to obtain information about unresolvable structures has already seen a lot of interest for both medical and material science applications. Unlike conventional X-ray attenuation, orientation dependent changes of the dark-field signal can be used to reveal microscopic structural orientation. To date, reconstruction of the three-dimensional dark-field signal requires dedicated, highly complex algorithms and specialized acquisition hardware. This severely hinders the possible application of orientation-dependent dark-field tomography. In this paper, we show that it is possible to perform this kind of dark-field tomography with common Talbot-Lau interferometer setups by reducing the reconstruction to several smaller independent problems. This allows for the reconstruction to be performed with commercially available software and our findings will therefore help pave the way for a straightforward implementation of orientation-dependent dark-field tomography.