Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep28926

Links

Tools

Export citation

Search in Google Scholar

Indefinite Plasmonic Beam Engineering by In-plane Holography

Journal article published in 2016 by J. Chen, L. Li ORCID, T. Li, S. N. Zhu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractRecent advances in controlling the optical phase at the sub-wavelength scale by meta-structures offer unprecedented possibilities in the beam engineering, holograms, and even invisible cloaks. In despite of developments of plasmonic beam engineering for definite beams, here, we proposed a new holographic strategy by in-plane diffraction process to access indefinite plasmonic beams, where a counterintuitive oscillating beam was achieved at a free metal surface that is against the common recognition of light traveling. Beyond the conventional hologram, our approach emphasizes on the phase correlation on the target, and casts an in-depth insight into the beam formation as a kind of long depth-of-field object. Moreover, in contrast to previous plasmonic holography with space light as references, our approach is totally fulfilled in a planar dimension that offers a thoroughly compact manipulation of the plasmonic near-field and suggests new possibilities in nanophotonic designs.