Published in

Hindawi, Mediators of Inflammation, (2016), p. 1-11, 2016

DOI: 10.1155/2016/1638916

Links

Tools

Export citation

Search in Google Scholar

Negative Impact of Hypoxia on Tryptophan 2,3-Dioxygenase Function

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Tryptophan is an essential amino acid for hosts and pathogens. The liver enzyme tryptophan 2,3-dioxygenase (TDO) provokes, by its ability to degrade tryptophan to N-formylkynurenine, the precursor of the immune-relevant kynurenines, direct and indirect antimicrobial and immunoregulatory states. Up to now these TDO-mediated broad-spectrum effector functions have never been observed under hypoxiain vitro, although physiologic oxygen concentrations in liver tissue are low, especially in case of infection. Here we analysed recombinant expressed human TDO andex vivomurine TDO functions under different oxygen conditions and show that TDO-induced restrictions of clinically relevant pathogens (bacteria, parasites) and of T cell proliferation are abrogated under hypoxic conditions. We pinpointed the loss of TDO efficiency to the reduction of TDO activity, since cell survival and TDO protein levels were unaffected. In conclusion, the potent antimicrobial as well as immunoregulatory effects of TDO were substantially impaired under hypoxic conditions that pathophysiologically occurin vivo. This might be detrimental for the appropriate host immune response towards relevant pathogens.