International Union of Crystallography, IUCrJ, 4(4), p. 495-505, 2017
DOI: 10.1107/s2052252517007527
Full text: Download
Microbial nitrite reductases are denitrifying enzymes that are a major component of the global nitrogen cycle. Multiple structures measured from one crystal (MSOX data) of copper nitrite reductase at 240 K, together with molecular-dynamics simulations, have revealed protein dynamics at the type 2 copper site that are significant for its catalytic properties and for the entry and exit of solvent or ligands to and from the active site. Molecular-dynamics simulations were performed using different protonation states of the key catalytic residues (AspCATand HisCAT) involved in the nitrite-reduction mechanism of this enzyme. Taken together, the crystal structures and simulations show that the AspCATprotonation state strongly influences the active-site solvent accessibility, while the dynamics of the active-site `capping residue' (IleCAT), a determinant of ligand binding, are influenced both by temperature and by the protonation state of AspCAT. A previously unobserved conformation of IleCATis seen in the elevated temperature series compared with 100 K structures. DFT calculations also show that the loss of a bound water ligand at the active site during the MSOX series is consistent with reduction of the type 2 Cu atom.