Published in

Springer Nature [academic journals on nature.com], Cell Death and Disease, 6(8), p. e2877-e2877, 2017

DOI: 10.1038/cddis.2017.274

Links

Tools

Export citation

Search in Google Scholar

Bilirubin neurotoxicity is associated with proteasome inhibition

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe molecular mechanism underlying bilirubin neurotoxicity remains obscure. Ubiquitin–proteasome system-mediated proteolysis is pivotal to virtually all cellular processes and cell survival. Here we report for the first time that bilirubin at a clinically relevant elevated level impairs proteasomal function via inhibiting both the 19S proteasome-associated deubiquitinases (USP14 and UCHL5) and the chymotrypsin-like (CT-like) peptidase activity of 20S proteasomes, thereby contributing to bilirubin neurotoxicity. This is supported by multiple lines of evidence. First, sera from patients with hyperbilirubinemia were able to inhibit the peptidase activity of purified 20S proteasome in vitro in a bilirubin concentration-dependent manner; meanwhile, the blood cells of these patients showed significantly increased levels of ubiquitinated proteins (Ub-prs), consistent with proteasome inhibition. Second, intracerebroventricular injection to adult rats or intraperitoneal injections to neonatal rats of bilirubin-induced neural accumulation of Ub-prs, concurrent with other neural pathology; and brain malfunction and pathology induced by neonatal exposure to hyperbilirubinemia were detectable in the rats during their adulthood. Third, in primary cultures of hippocampal neurons, bilirubin strikingly induced Ub-pr accumulation before the activation of cell death pathway becomes discernible. Finally, bilirubin in vitro directly inhibited both the deubiquitination activity of proteasome-associated USP14 and UCHL5 and the CT-like peptidase activity of purified 20S proteasomes, in a dose-dependent manner. Hence, this study has discovered that increased bilirubin at a clinically achievable level can act as a proteasome inhibitor via targeting the 19S proteasome-associated deubiquitinases (DUBs) and, perhaps to a less extent, the 20S proteasome, identifying a novel mechanism for bilirubin neurotoxicity.