Dissemin is shutting down on January 1st, 2025

Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 5(18), p. 3387-3401, 2018

DOI: 10.5194/acp-18-3387-2018

European Geosciences Union, Atmospheric Chemistry and Physics Discussions, p. 1-40

DOI: 10.5194/acp-2017-678

Links

Tools

Export citation

Search in Google Scholar

High-resolution quantification of atmospheric CO<sub>2</sub> mixing ratios in the Greater Toronto Area, Canada

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. Many stakeholders are seeking methods to reduce carbon dioxide (CO2) emissions in urban areas, but reliable, high-resolution inventories are required to guide these efforts. We present the development of a high-resolution CO2 inventory available for the Greater Toronto Area and surrounding region in Southern Ontario, Canada (area of ∼ 2.8 × 105 km2, 26 % of the province of Ontario). The new SOCE (Southern Ontario CO2 Emissions) inventory is available at the 2.5 × 2.5 km spatial and hourly temporal resolution and characterizes emissions from seven sectors: area, residential natural-gas combustion, commercial natural-gas combustion, point, marine, on-road, and off-road. To assess the accuracy of the SOCE inventory, we developed an observation–model framework using the GEM-MACH chemistry–transport model run on a high-resolution grid with 2.5 km grid spacing coupled to the Fossil Fuel Data Assimilation System (FFDAS) v2 inventories for anthropogenic CO2 emissions and the European Centre for Medium-Range Weather Forecasts (ECMWF) land carbon model C-TESSEL for biogenic fluxes. A run using FFDAS for the Southern Ontario region was compared to a run in which its emissions were replaced by the SOCE inventory. Simulated CO2 mixing ratios were compared against in situ measurements made at four sites in Southern Ontario – Downsview, Hanlan's Point, Egbert and Turkey Point – in 3 winter months, January–March 2016. Model simulations had better agreement with measurements when using the SOCE inventory emissions versus other inventories, quantified using a variety of statistics such as correlation coefficient, root-mean-square error, and mean bias. Furthermore, when run with the SOCE inventory, the model had improved ability to capture the typical diurnal pattern of CO2 mixing ratios, particularly at the Downsview, Hanlan's Point, and Egbert sites. In addition to improved model–measurement agreement, the SOCE inventory offers a sectoral breakdown of emissions, allowing estimation of average time-of-day and day-of-week contributions of different sectors. Our results show that at night, emissions from residential and commercial natural-gas combustion and other area sources can contribute > 80 % of the CO2 enhancement, while during the day emissions from the on-road sector dominate, accounting for > 70 % of the enhancement.