Published in

De Gruyter Open, Nanophotonics, 5(6), p. 977-996, 2017

DOI: 10.1515/nanoph-2017-0019

Links

Tools

Export citation

Search in Google Scholar

Unidirectional reflectionless light propagation at exceptional points

Journal article published in 2017 by Yin Huang, Yuecheng Shen, Changjun Min, Shanhui Fan, Georgios Veronis
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract In this paper, we provide a comprehensive review of unidirectional reflectionless light propagation in photonic devices at exceptional points (EPs). EPs, which are branch point singularities of the spectrum, associated with the coalescence of both eigenvalues and corresponding eigenstates, lead to interesting phenomena, such as level repulsion and crossing, bifurcation, chaos, and phase transitions in open quantum systems described by non-Hermitian Hamiltonians. Recently, it was shown that judiciously designed photonic synthetic matters could mimic the complex non-Hermitian Hamiltonians in quantum mechanics and realize unidirectional reflection at optical EPs. Unidirectional reflectionlessness is of great interest for optical invisibility. Achieving unidirectional reflectionless light propagation could also be potentially important for developing optical devices, such as optical network analyzers. Here, we discuss unidirectional reflectionlessness at EPs in both parity-time (PT)-symmetric and non-PT-symmetric optical systems. We also provide an outlook on possible future directions in this field.