Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-02440-6

Links

Tools

Export citation

Search in Google Scholar

The Plasmodium PI(4)K inhibitor KDU691 selectively inhibits dihydroartemisinin-pretreated Plasmodium falciparum ring-stage parasites

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractMalaria control and elimination are threatened by the emergence and spread of resistance to artemisinin-based combination therapies (ACTs). Experimental evidence suggests that when an artemisinin (ART)-sensitive (K13 wild-type) Plasmodium falciparum strain is exposed to ART derivatives such as dihydroartemisinin (DHA), a small population of the early ring-stage parasites can survive drug treatment by entering cell cycle arrest or dormancy. After drug removal, these parasites can resume growth. Dormancy has been hypothesized to be an adaptive physiological mechanism that has been linked to recrudescence of parasites after monotherapy with ART and, possibly contributes to ART resistance. Here, we evaluate the in vitro drug sensitivity profile of normally-developing P. falciparum ring stages and DHA-pretreated dormant rings (DP-rings) using a panel of antimalarial drugs, including the Plasmodium phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor KDU691. We report that while KDU691 shows no activity against rings, it is highly inhibitory against DP-rings; a drug effect opposite to that of ART. Moreover, we provide evidence that KDU691 also kills DP-rings of P. falciparum ART-resistant strains expressing mutant K13.