Dissemin is shutting down on January 1st, 2025

Published in

International Union of Crystallography, Journal of Applied Crystallography, 6(49), p. 1912-1921, 2016

DOI: 10.1107/s1600576716013595

Links

Tools

Export citation

Search in Google Scholar

Robust background modelling in DIALS

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A method for estimating the background under each reflection during integration that is robust in the presence of pixel outliers is presented. The method uses a generalized linear model approach that is more appropriate for use with Poisson distributed data than traditional approaches to pixel outlier handling in integration programs. The algorithm is most applicable to data with a very low background level where assumptions of a normal distribution are no longer valid as an approximation to the Poisson distribution. It is shown that traditional methods can result in the systematic underestimation of background values. This then results in the reflection intensities being overestimated and gives rise to a change in the overall distribution of reflection intensities in a dataset such that too few weak reflections appear to be recorded. Statistical tests performed during data reduction may mistakenly attribute this to merohedral twinning in the crystal. Application of the robust generalized linear model algorithm is shown to correct for this bias.