Published in

Nature Research, Nature Communications, 1(7), 2016

DOI: 10.1038/ncomms12328

Links

Tools

Export citation

Search in Google Scholar

SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3–LAR adhesion

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractSynaptic adhesion molecules regulate various aspects of synapse development, function and plasticity. These functions mainly involve trans-synaptic interactions and positive regulations, whereas cis-interactions and negative regulation are less understood. Here we report that SALM4, a member of the SALM/Lrfn family of synaptic adhesion molecules, suppresses excitatory synapse development through cis inhibition of SALM3, another SALM family protein with synaptogenic activity. Salm4-mutant (Salm4−/−) mice show increased excitatory synapse numbers in the hippocampus. SALM4 cis-interacts with SALM3, inhibits trans-synaptic SALM3 interaction with presynaptic LAR family receptor tyrosine phosphatases and suppresses SALM3-dependent presynaptic differentiation. Importantly, deletion of Salm3 in Salm4−/− mice (Salm3−/−; Salm4−/−) normalizes the increased excitatory synapse number. These results suggest that SALM4 negatively regulates excitatory synapses via cis inhibition of the trans-synaptic SALM3–LAR adhesion.