Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep34053

Links

Tools

Export citation

Search in Google Scholar

Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in breast cancer cells: an improved nanomedicine strategy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractCombination therapy of multiple drugs through a single system is exhibiting high therapeutic effects. We investigate nanocarrier mediated inhibitory effects of topotecan (TPT) and quercetin (QT) on triple negative breast cancer (TNBC) (MDA-MB-231) and multi drug resistant (MDR) type breast cancer cells (MCF-7) with respect to cellular uptake efficiency and therapeutic mechanisms as in vitro and in vivo. The synthesized mesoporous silica nanoparticle (MSN) pores used for loading TPT; the outer of the nanoparticles was decorated with poly (acrylic acid) (PAA)-Chitosan (CS) as anionic inner-cationic outer layer respectively and conjugated with QT. Subsequently, grafting of arginine-glycine-aspartic acid (cRGD) peptide on the surface of nanocarrier (CPMSN) thwarted the uptake by normal cells, but facilitated their uptake in cancer cells through integrin receptor mediated endocytosis and the dissociation of nanocarriers due to the ability to degrade CS and PAA in acidic pH, which enhance the intracellular release of drugs. Subsequently, the released drugs induce remarkable molecular activation as well as structural changes in tumor cell endoplasmic reticulum, nucleus and mitochondria that can trigger cell death. The valuable CPMSNs may open up new avenues in developing targeted therapeutic strategies to treat cancer through serving as an effective drug delivery podium.