Published in

American Geophysical Union, Journal of Geophysical Research: Atmospheres, 10(121), p. 5680-5698, 2016

DOI: 10.1002/2015jd024492

Links

Tools

Export citation

Search in Google Scholar

Simulating the extreme 2013/2014 winter in a future climate

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

How would the spell of extreme weather observed over North America and western Europe during the 2013/2014 winter manifest itself in a warmer climate? Here a forced sensitivity method is used to calculate optimal model tendency perturbations which result in a simulation which has its upper atmospheric circulation shifted in the direction of the January 2014 jet stream pattern. When applied to a simulation run under present-day conditions the main features of the observations of this event are reproduced, such as the more zonal position and increased strength of the midlatitude North Atlantic storm track, the anomalous temperature pattern over North America, and the excessive precipitation in parts of Europe. When this method is applied to a future warmer climate, the North Atlantic storm track changes to a more zonal orientation, but its strength does not see the significant increase that is obtained in the present-day simulations. Despite southward advection of polar air into northeastern America, which has also occurred during the 2013/2014 winter, the associated drop in temperature is less in the future climate compared to the present-day climate because of Arctic amplification. The less steep drop in temperatures over northeastern America leads to a smaller land-sea temperature contrast, less baroclinic instability, and a reduced increase of midlatitude storminess. While one may expect the future increased atmospheric moisture content to augment the net precipitation, for this specific event, this effect is counterbalanced by the dynamics, leading to a similar net increase in precipitation in the future simulations compared to the present day.