Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/srep42198

Environmental Arsenic in a Changing World, p. 71-72, 2019

DOI: 10.1201/9781351046633-27

Links

Tools

Export citation

Search in Google Scholar

Arsenic Methylation and its Relationship to Abundance and Diversity of arsM Genes in Composting Manure

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAlthough methylation is regarded as one of the main detoxification pathways for arsenic (As), current knowledge about this process during manure composting remains limited. In this study, two pilot-scale compost piles were established to treat manure contaminated with As. An overall accumulation of methylated As occurred during 60 day-composting time. The concentration of monomethylarsonic acid (MMA) increased from 6 to 190 μg kg−1 within 15 days and decreased to 35 μg kg−1 at the end of the maturing phase; while the concentration of dimethylarsinic acid (DMA) continuously increased from 33 to 595 μg kg−1 over the composting time. The arsM gene copies increased gradually from 0.08 × 109 to 6.82 × 109 copies g−1 dry mass over time and correlated positively to the concentrations of methylated As. 16S rRNA gene sequencing and arsM clone library analysis confirmed the high abundance and diversity of arsM genes. Many of these genes were related to those from known As-methylating microbes, including Streptomyces sp., Amycolatopsis mediterranei and Sphaerobacter thermophiles. These results demonstrated that As methylation during manure composting is significant and, for the first time, established a linkage between As biomethylation and the abundance and diversity of the arsM functional genes in composting manure.