Published in

eLife Sciences Publications, eLife, (6), 2017

DOI: 10.7554/elife.25229

Links

Tools

Export citation

Search in Google Scholar

Genome mining unearths a hybrid nonribosomal peptide synthetase-like-pteridine synthase biosynthetic gene cluster

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Nonribosomal peptides represent a large class of metabolites with pharmaceutical relevance. Pteridines, such as pterins, folates, and flavins, are heterocyclic metabolites that often serve as redox-active cofactors. The biosynthetic machineries for construction of these distinct classes of small molecules operate independently in the cell. Here, we discovered an unprecedented nonribosomal peptide synthetase-like-pteridine synthase hybrid biosynthetic gene cluster in Photorhabdus luminescens using genome synteny analysis. P. luminescens is a Gammaproteobacterium that undergoes phenotypic variation and can have both pathogenic and mutualistic roles. Through extensive gene deletion, pathway-targeted molecular networking, quantitative proteomic analysis, and NMR, we show that the genetic locus affects the regulation of quorum sensing and secondary metabolic enzymes and encodes new pteridine metabolites functionalized with cis-amide acyl-side chains, termed pepteridine A (1) and B (2). The pepteridines are produced in the pathogenic phenotypic variant and represent the first reported metabolites to be synthesized by a hybrid NRPS-pteridine pathway. These studies expand our view of the combinatorial biosynthetic potential available in bacteria.