Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-00778-5

Links

Tools

Export citation

Search in Google Scholar

Hybrid Organic-Inorganic Perovskite Memory with Long-Term Stability in Air

Journal article published in 2017 by Bohee Hwang, Jang-Sik Lee ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractOrganic-inorganic perovskite materials have attracted extensive attention for wide range of applications such as solar cells, photo detectors, and memory devices. However, the lack of stability in ambient condition prevented the perovskite materials from applying to practical applications. Here, we demonstrate resistive switching memory devices based on organic-inorganic perovskite (CH3NH3PbI3) that have been passivated using thin metal-oxide-layers. CH3NH3PbI3-based memory devices with a solution-processed ZnO passivation layer retain low-voltage operation and, on/off current ratio for more than 30 days in air. Passivation with atomic-layer-deposited (ALD) AlOx is also demonstrated. The resistive switching memory devices with an ALD AlOx passivation layer maintained reliable resistive switching for 30 d in ambient condition, but devices without the passivation layer degraded rapidly and did not show memory properties after 3 d. These results suggest that encapsulation with thin metal-oxide layers is easy and commercially-viable methods to fabricate practical memory devices, and has potential to realize memory devices with long-term stability and reliable, reproducible programmable memory characteristics.